1 research outputs found

    In Vivo Feasibility of Real-Time Monitoring of Focused Ultrasound Surgery (FUS) Using Harmonic Motion Imaging (HMI)

    Get PDF
    Abstract-In this study, the Harmonic Motion Imaging for Focused Ultrasound (HMIFU) technique is applied to monitor changes in mechanical properties of tissues during thermal therapy in a transgenic breast cancer mouse model in vivo. An HMIFU system, composed of a 4.5-MHz focused ultrasound (FUS) and a 3.3-MHz phased-array imaging transducer, was mechanically moved to image and ablate the entire tumor. The FUS transducer was driven by an amplitude-modulated (AM) signal at 15 Hz. The acoustic intensity (I sp ta ) was equal to 1050 W/cm 2 at the focus. A digital low-pass filter was used to filter out the spectrum of the FUS beam and its harmonics prior to displacement estimation. The resulting axial displacement was estimated using 1-D crosscorrelation on the acquired RF signals. Results from two mice with eight lesions formed in each mouse (16 lesions total) showed that the average peak-to-peak displacement amplitude before and after lesion formation was respectively equal to 17.34 ± 1.34 µm and 10.98 ± 1.82 µm (p < 0.001). Cell death was also confirmed by hematoxylin and eosin histology. HMI displacement can be used to monitor the relative tissue stiffness changes in real time during heating so that the treatment procedure can be performed in a timeefficient manner. The HMIFU system may, therefore, constitute a cost-efficient and reliable alternative for real-time monitoring of thermal ablation. Index Terms-Acoustic radiation force, breast cancer, focused ultrasound surgery (FUS), harmonic motion imaging, highintensity focused ultrasound (HIFU), in vivo, monitoring, noninvasive estimation, tissue ablation, ultrasound
    corecore